
Discovering

Domain-Driven Design

[Sample chapters]



What is domain-driven design?

“A domain-driven design approach provides principles and patterns to

address the challenges faced with developing complex domain models”

- Eric Evans

Let’s start with a common problem - developers start coding a software

solution with a lack of business knowledge and understanding. When this

happens we can end up with developers that write code that does not truly

represent business functionality. As software engineers, most of us have

experienced a “spaghetti” or "big ball of mud" codebase. A codebase with no

clarity, where there are dependencies in all directions. What this really means is

the code is often highly coupled, fragile and is difficult to test and maintain. A

change to one part of the code may have a big knock-on effect.

Domain-driven design approaches software development with a focus on

gaining a rich understanding of business rules and processes from domain

experts. The aim is to understand as much about the domain as possible to

align the engineering team and the software with the business, therefore

improving communication, facilitating changes and decreasing complexity of

inherently complex problems.

It’s important to remember that domain-driven design is not just about code. It

is not purely a technical concern, although there are technical patterns we can

use in the code. It is a wider concept that requires engineering teams to seek

understanding of the problem space before trying to solve the problem, and

modelling the domain using that understanding.

If we align the software we build to the business we can write better, more

easily maintainable and testable software. We can also communicate more

effectively, thus enabling us to solve complex problems.

The main DDD concepts that we will cover throughout this book include

domains, domain experts, ubiquitous language, developing domain models



and bounded contexts. We will also take a look at some software patterns that

can be implemented to provide a domain-driven angle in your code.



Entities and value objects

Representing the domain model

We’ve discovered concepts in our domain and built up a mental model. How

do we translate that into code? Domain-driven design introduces three key

concepts that allow us to represent our domain model; entities, value objects

and aggregate roots.

One crucial thing about these types of objects is they are NOT just a data or

persistence concern. These objects are all about behaviour and data in regards

to the domain model and business logic.

Entities

A slight tangent to preface this section. Throughout my career as a software

developer I have used the term “entity” in almost every project. Particularly

because of having a .NET background and using Entity Framework, my

understanding of an entity was always just a way to represent a database table

in code. There’s nothing wrong about this, but if that’s your current mental

model for entities then disregard that in the context of domain-driven design.

So what is an entity? It’s a domain object that has some intrinsic identity. This

could be a real-world property of the object, a combination of real-world

properties, or a computer generated value like an incremental integer or UUID.

The distinguishing behaviour of an entity is that even if its properties are the

same as another instance of the same type, it remains distinct because of its

unique identity.

Below are some examples of entities.



Person Product Car Song

Social security number
Name
Age
Price
Model
Colour

SKU
Name
Price

VIN
Make
Model
Colour

UUID
Name
Artist
Bpm
Lyrics

In each of these types you can see there is a unique identifier. A person has a

unique social security number (or a national insurance number in the UK) so we

could use that, a product often has a SKU (stock keeping unit) and a car has a

VIN (vehicle identification number). These are all real-world values that

represent an entity’s identity. Songs on the other hand may not have a

real-world identifier. In cases like this we can assign a computer generated

value that is guaranteed to be unique in our system.

If we have two users with an identical name and age they are not necessarily

the same person. Only if the social security number is equal can we determine

that the two instances represent the same person. Similarly, we could have two

instances of a product that have the same exact name and price, but they may

be totally different things. If they have the same SKU however, they are

considered to represent the same thing.



Tell, don’t ask

Related to coupling vs cohesion, here’s a technique you can use for writing

code in a simple but effective domain-driven way.



Here we have a person and some logic to decide whether the person can wear

some socks. There is nothing wrong with this at a first glance. The code works

and the rules are checked as they should. But let’s think about it a little more.

Can a person put socks on?

What if we have two places where we call the putOnSocks function? Can the

person put socks on? We would probably need to check using an if statement

everywhere we want to call this function in case they can’t. Code duplication

isn’t always a bad thing, but this is certainly something to keep in mind.

Why? Why? Why?

Another consideration is that although we’re checking whether the person can

put socks on, if they can’t we are throwing a PersonCannotWearSocksError

error. This is also fine, but it’s not very helpful. Why can’t they put socks on?

Breaking the rules

Most importantly, what we’ve discovered here is some domain logic. More

specifically, there’s an invariant which is a validation rule that must be enforced

by the domain object for it to be in a valid state.

In this case we have a rule that a person cannot put socks in if they already

have socks on. The rule was already there in the original code but it was

outside of the person class and would need to be repeated everywhere to

ensure the rules were followed. If the rules are not enforced we would publish

two consecutive PersonPutOnSocksEvent events. Can you put socks on if you



haven’t taken the previous socks off? (Alright smarty pants, maybe you

technically could but not in my made-up scenario). And what about removing

socks? Can you remove socks if you’re not wearing any? Certainly not! So we

definitely shouldn’t be able to raise consecutive PersonRemovedSocksEvent

events, but the code allows us to do just that. We’re essentially leaving our

code open to logic bugs.



Let’s fix it by refactoring the code using the “Tell, don’t ask” approach.

Firstly you’ll probably notice there is less logic in the calling code. Why’s that?

Essentially we’ve encapsulated our domain logic, moving it inside the domain

object itself rather than calling it all from outside. This may seem trivial, but

there are some major benefits.



Privacy first

Since we’re no longer asking whether the person can put on socks we are able

to make the canPutOnSocks function private. This isn’t required and we could

still expose this function if needed, but what it highlights is that we have more

fine grained control over what behaviours and functionality we want to expose

from our domain objects. Generally speaking, we should aim to expose as little

as possible.

Enforcing invariants

By encapsulating the domain logic inside the person class we now have better

control over the invariants and can enforce them within the class itself. For

example, now we can tell the person to put on socks without asking first. The

domain object is now responsible for ensuring that the person is not already

wearing socks. Now the logic is encapsulated we can more easily throw a

specific error too since we know why the person cannot put on socks - because

they’re already wearing some. The same logic applies to removing socks as

mentioned in the previous section.

Since we’re now encapsulating this logic we’re also ensuring that the correct

domain events are published. We can no longer publish consecutive

PersonPutOnSocksEvent or PersonRemovedSocksEvent events. We would

need to tell the person to remove their socks before putting socks on.

Testing

Before we had logic outside of our domain object. How would we test it? We’d

need to test our calling code to ensure the invariants are enforced. What if we

miss one? What if there’s a mistake or a conflict of rules? Now we’re refactored

the code, our encapsulated domain logic is easily testable in one place.



This is another silly and trivial example, but hopefully demonstrates the value

of how thinking about domain logic and the way we structure our code can

help us enforce business rules and result in increased testability and

maintainability.


